Giant Planet Migration through the Action of Disk Torques and Planet-planet Scattering
نویسندگان
چکیده
This paper presents a parametric study of giant planet migration through the combined action of disk torques and planet-planet scattering. The torques exerted on planets during Type II migration in circumstellar disks readily decrease the semi-major axes a, whereas scattering between planets increases the orbital eccentricities ǫ. This paper presents a parametric exploration of the possible parameter space for this migration scenario using two (initial) planetary mass distributions and a range of values for the time scale of eccentricity damping (due to the disk). For each class of systems, many realizations of the simulations are performed in order to determine the distributions of the resulting orbital elements of the surviving planets; this paper presents the results of ∼ 8500 numerical experiments. Our goal is to study the physics of this particular migration mechanism and to test it against observations of extrasolar planets. The action of disk torques and planet-planet scattering results in a distribution of final orbital elements that fills the a−ǫ plane, in rough agreement with the orbital elements of observed extrasolar planets. In addition to specifying the orbital elements, we characterize this migration mechanism by finding the percentages of ejected and accreted planets, the number of collisions, the dependence of outcomes on planetary masses, the time spent in 2:1 and 3:1 resonances, and the effects of the planetary IMF. We also determine the distribution of inclination angles of surviving planets and the distribution of ejection speeds for exiled planets.
منابع مشابه
Exotic Earths: forming habitable worlds with giant planet migration.
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths....
متن کاملBaroclinic Generation of Potential Vorticity in an Embedded Planet-Disk System
We use a multi-dimensional hydrodynamics code to study the gravitational interaction between an embedded planet and a protoplanetary disk with emphasis on the generation of vortensity (Potential Vorticity or PV) through a Baroclinic Instability. We show that the generation of PV is very common and effective in non-barotropic disks through the Baroclinic Instability, especially within the coorbi...
متن کاملThe effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems
Context. Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims. We add to the possible realism of our mo...
متن کاملar X iv : a st ro - p h / 05 07 49 2 v 2 8 S ep 2 00 5 Planetary Migration By PHIL IP
Gravitational torques between a planet and gas in the protoplanetary disk result in orbital migration of the planet, and modification of the disk surface density. Migration via this mechanism is likely to play an important role in the formation and early evolution of planetary systems. For masses comparable to those of observed giant extrasolar planets, the interaction with the disk is strong e...
متن کاملOrbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets
Giant planets in circumstellar disks can migrate inward from their initial (formation) positions. Radial migration is caused by inward torques between the planet and the disk; by outward torques between the planet and the spinning star; and by outward torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem o...
متن کامل